

Электронная плотность

$$\rho(\vec{r}) = N \!\!\int \!\! \cdots \!\! \int \!\! \left| \Psi(\vec{x}_1, \vec{x}_2, \ldots, \vec{x}_N) \right|^2 \! ds_1 d\vec{x}_2 \ldots d\vec{x}_N \,. \label{eq:rho_prob}$$

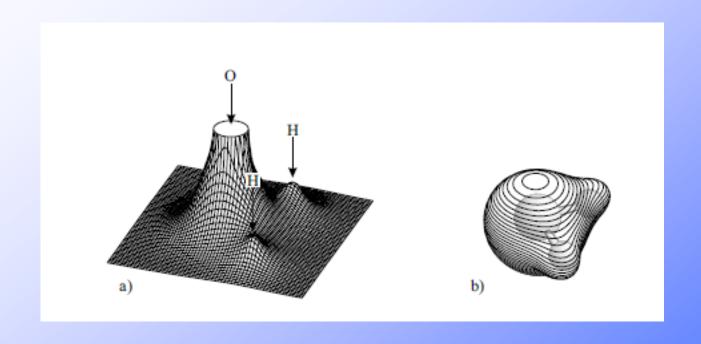
Вероятность обнаружения любого из N электронов с произвольным спином в некоторой заданной области пространства при том, что остальные N-1 электронов находятся в произвольных местах.

$$\rho(\vec{r} \to \infty) = 0,$$

$$\int \rho(\vec{r}) d\vec{r}_{l} = N.$$

Если подходить к вопросу строго, то речь идет о плотности вероятности нахождения электрона в заданном состоянии

Несмотря на свою вероятностную природу, электронная плотность является наблюдаемой величиной



Возможно ее экспериментальное изучение, например, из данных по дифракции рентгеновского излучения

Парная плотность

$$\rho_{2}(\vec{x}_{1}, \vec{x}_{2}) = N(N-1) \int \cdots \int \left| \Psi(\vec{x}_{1}, \vec{x}_{2}, ..., \vec{x}_{N}) \right|^{2} d\vec{x}_{3} ... d\vec{x}_{N}$$

Вероятность обнаружения пары электронов с заданными спинами в заданных областях пространства.

Если предположить, что электроны не взаимодействуют друг с другом, то рассчитать парную плотность довольно просто

$$\rho_2(\vec{x}_1, \vec{x}_2) = \frac{N-1}{N} \rho(\vec{x}_1) \rho(\vec{x}_2)$$

Но, поскольку, электроны испытывают взаимные спин-спиновые (принцип Паули, обменная энергия) и электростатические взаимодействия, то описание парной плотности должно быть более сложным.

$$\begin{split} &\gamma_2(\vec{x}_1, \vec{x}_2; \vec{x}_1', \vec{x}_2') = \\ &N(N-1) \! \int \! \cdots \! \int \! \Psi(\vec{x}_1, \vec{x}_2, \vec{x}_3, \dots, \vec{x}_N) \, \Psi^*(\vec{x}_1', \vec{x}_2', \vec{x}_3, \dots, \vec{x}_N) \, d\vec{x}_3 \dots d\vec{x}_N \end{split}$$

Приведенная матрица плотности позволяет описывать антисимметричность системы относительно перестановок электронов.

$$\gamma_2(\vec{\mathbf{x}}_1,\vec{\mathbf{x}}_2;\vec{\mathbf{x}}_1',\vec{\mathbf{x}}_2') = -\gamma_2(\vec{\mathbf{x}}_2,\vec{\mathbf{x}}_1;\vec{\mathbf{x}}_1',\vec{\mathbf{x}}_2')$$

Переход от приведенной матрицы плотности к парной плотности служит прекраснйо иллюстрацией принципа Паули.

Для случая, когда парная плотность рассчитывается для одного и того же электрона получаем

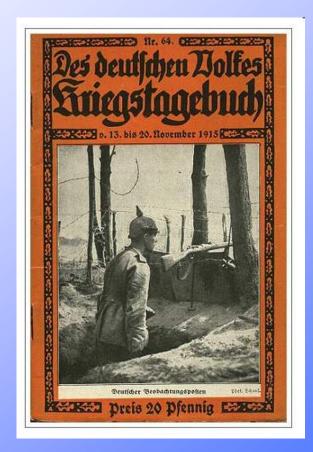
$$\rho_2(\vec{\bf x}_1,\vec{\bf x}_1) = -\rho_2(\vec{\bf x}_1,\vec{\bf x}_1)$$

Подобное равенство может быть верным, только для плотности равной нулю, что означает нулевую вероятность существования двух частиц с одинаковыми спинами в одной области пространства.

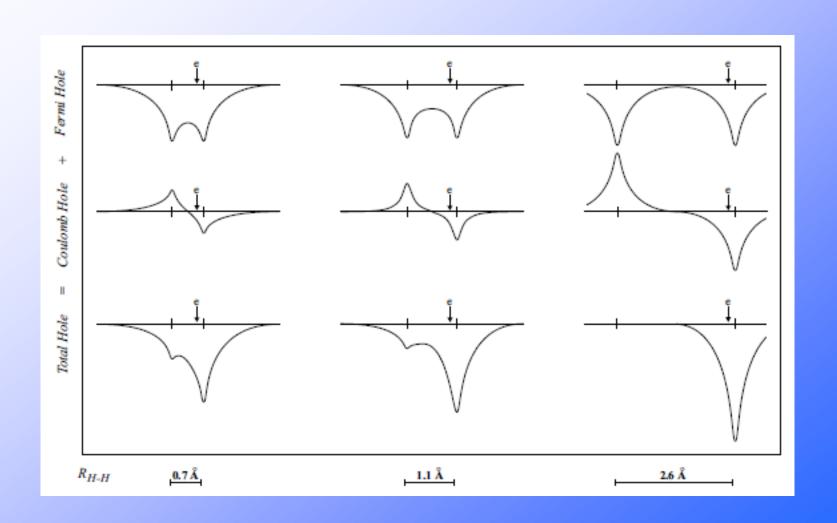
«Дырки»

Все сложные взаимодействия между электронами можно описать следующим образом:

Каждый электрон уменьшает вероятность появления другого электрона рядом с собой. Говорят, что он создает «дырку», препятствующую появлению других электронов.



Дырки Ферми служат для описания спин-спиновых взаимодействий, а кулоновские – для электростатических



Электронную плотность можно использовать для описания межэлектронных взаимодействий

$$E_{ee} = \left\langle \Psi \middle| \sum_{i}^{N} \sum_{j>i}^{N} \frac{1}{r_{ij}} \middle| \Psi \right\rangle = \frac{1}{2} \int \int \frac{\rho_2(\vec{r}_1,\vec{r}_2)}{r_{12}} \, d\vec{r}_1 d\vec{r}_2 \, . \label{ee}$$

Если принять предложенную концепцию дырок, то мжэлектронные взаимодействия будут представлены следующим образом

$$E_{ee} = \frac{1}{2} \int\!\int\! \frac{\rho(\vec{r}_1)\rho(\vec{r}_2)}{r_{12}} \, d\vec{r}_1 d\vec{r}_2 + \frac{1}{2} \int\!\int\! \frac{\rho(\vec{r}_1) h_{XC}(\vec{r}_1;\vec{r}_2)}{r_{12}} d\vec{r}_1 d\vec{r}_2$$

Обменно-корреляционная дырка, являющаяся суммой Ферми- и кулоновской дырки

$$h_{\text{XC}}(\vec{r}_1;\vec{r}_2) = h_{\text{X}}^{\sigma_1 = \sigma_2}(\vec{r}_1;\vec{r}_2) + h_{\text{C}}^{\sigma_1,\sigma_2}(\vec{r}_1,\vec{r}_2)$$

Электронная плотоность

- Позволяет довольно легко описывать межэлектронные взаимодействия, являющиеся основной проблемой при решении уравнения Шредингера
- ©Если теория Хартри-Фока требует введения 4N переменных (координаты и спин), то описание системы через одно- и двухэлектронные матрицы плотностей требует введения всего восьми переменных вне зависимости от размеров системы.

Указанных причин достаточно для построения теории строения вещества, основанной на электронной плотности.

Первые попытки

Ллевеллин Хиллет Томас

Энрико Ферми

В 1927 году Томас и Ферми при изучении ансамблей элементарных частиц предложили следующее описание кинетической энергии однородного электронного газа

$$T_{TF}[\rho(\vec{r})] = \frac{3}{10} (3\pi^2)^{2/3} \int \rho^{5/3}(\vec{r}) d\vec{r}$$

Это выражение было использовано ими для описания энергии атома через электронные плотности

$$E_{TF}[\rho(\vec{r})] = \frac{3}{10} (3\pi^2)^{2/3} \int \! \rho^{5/3}(\vec{r}) d\vec{r} - Z \! \int \! \frac{\rho(\vec{r})}{r} \ d\vec{r} + \frac{1}{2} \! \int \! \int \! \frac{\rho(\vec{r}_1) \rho(\vec{r}_2)}{r_{12}} \, d\vec{r}_1 d\vec{r}_2 \, d\vec{r}_1 d\vec{r}_2 \, d\vec{r}_1 d\vec{r}_2 \, d\vec{r}_2 \, d\vec{r}_1 d\vec{r}_2 \, d\vec{r}_2 \, d\vec{r}_1 d\vec{r}_2 \, d\vec{r}_1 d\vec{r}_2 \, d\vec{r}_2 \, d\vec{r}_1 d\vec{r}_2 \, d\vec{r}_2 \, d\vec{r}_1 d\vec{r}_2 \, d\vec{r}_1 d\vec{r}_2 \, d\vec{r}_1 d\vec{r}_2 \, d\vec{r}_2 \, d\vec{r}_1 d\vec{r}_2 \, d\vec{r}_1 d\vec{r}_2 \, d\vec{r}_2 \, d\vec{r}_2 \, d\vec{r}_2 \, d\vec{r}_2 \, d\vec{r}_1 d\vec{r}_2 \, d\vec{r}_2 \,$$

Это и был первый подход к описанию квантовых систем не на основе волновых функций

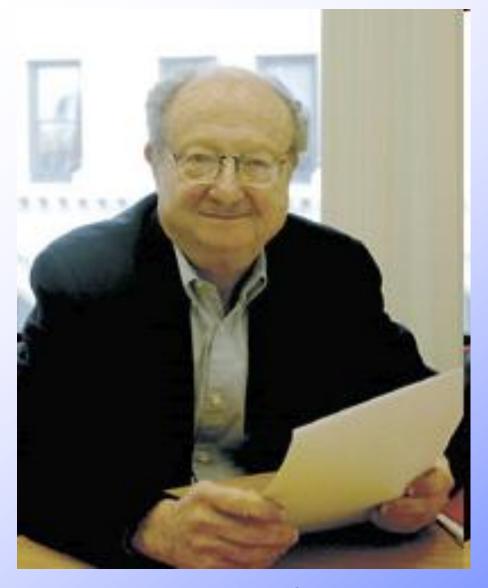
Результаты применения теории Томаса-Ферми могли применяться только для качественного описания систем и не могли конкурировать с хартрифоковской теорией.

Тем не менее, попытки использования электронных плотностей в квантовой механике продолжались

Джон Слэйтер в 1951 году применил электронную плотность для описания обменной энергии в методе Хартри-Фока

$$E_{X\alpha}[\rho] = -\frac{9}{8} \left(\frac{3}{\pi}\right)^{1/3} \alpha \int \rho(\vec{r}_1)^{4/3} d\vec{r}_1$$

Но и этот подход не мог конкурировать с развивавшейся классической теорией Хартри-Фока



Пьер Хоэнберг

Вальтер Кон

1964 год

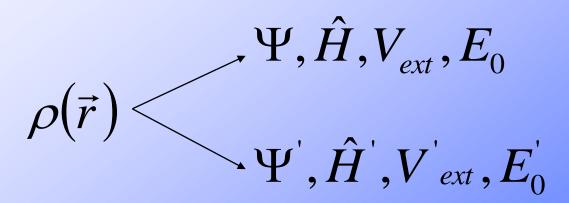
Истиным началом теории функционала электронной плотности стали две теоремы Хоэнберга и Кона, сформулированные и доказанные в 1964 году

- Пюбая наблюдаемая величина квантовой системы может быть получена из знания об электронной плотности этой системы.
- @Электронная плотность квантовой системы подчиняется вариационному принципу также как и волновая функция

Первая теорема Хоэнберга и Кона выделяет электронную плотность в качестве универсального свойства, несущего информацию обо всех остальных свойствах системы.

Доказательство первой теоремы Хоэнберга и Кона

Предположим, что одной и той же электронной плотности могут соответствовать два различных состояния системы, описываемые различными волновыми функциями. Также будут существовать различные гамильтонианы, характеризующие эти состояния и внешние потенциалы как часть гамильтонианов



Рассчитаем энергию, подставляя в первый гамильтониан вторую волновую функцию как пробную

$$E_0 < \langle \Psi' | \hat{H} | \Psi' \rangle = \langle \Psi' | \hat{H}' | \Psi' \rangle + \langle \Psi' | \hat{H} - \hat{H}' | \Psi' \rangle = E_0' + \int \rho(\vec{r}) \left[V_{ext}(\vec{r}) - V'_{ext}(\vec{r}) \right] d\vec{r}$$

Проделаем ту же самую процедуру, но взяв вторй гамильтониан и первую функцию

$$E_0' < \langle \Psi | \hat{H}' | \Psi \rangle = \langle \Psi | \hat{H} | \Psi \rangle + \langle \Psi | \hat{H}' - \hat{H} | \Psi \rangle = E_0 + \int \rho(\vec{r}) \left[V_{ext}(\vec{r}) - V'_{ext}(\vec{r}) \right] d\vec{r},$$

Если сложить два этих неравенства, получим

$$E_0 + E'_0 < E'_0 + E_0$$

Мы пришли к противоречию, следовательно исходное предположение неверно, и электронная плотность однозначно характеризует состояние квантовой системы

Лю Шам

Подход Кона-Шама

В его основе лежит приближение идеального электронного газа, в котором отсутствуют взаимодействия между частицами. Это позволяет довольно легко определить кинетическую энергию системы

$$T_{S} = -\frac{1}{2} \sum_{i}^{N} \left\langle \phi_{i} \middle| \nabla^{2} \middle| \phi_{i} \right\rangle$$

Тогда, систему в целом будет описывать следующий функционал

$$F[\rho(\vec{r})] = T_S[\rho(\vec{r})] + J[\rho(\vec{r})] + E_{XC}[\rho(\vec{r})]$$

$$\mathrm{E}_{\mathrm{XC}}[\rho] \equiv \left(\mathrm{T}[\rho] - \mathrm{T}_{\mathrm{S}}[\rho]\right) + \left(\mathrm{E}_{\mathrm{ee}}[\rho] - \mathrm{J}[\rho]\right) = \mathrm{T}_{\mathrm{C}}[\rho] + \mathrm{E}_{\mathrm{nel}}[\rho]$$

Обменно-корреляционный функционал

Энергию системы можно описать следующим образом

$$\begin{split} E[\rho(\vec{r})] &= T_S[\rho] + J[\rho] + E_{XC}[\rho] + E_{Ne}[\rho] \\ &= T_S[\rho] + \frac{1}{2} \iint \frac{\rho(\vec{r}_1) \; \rho(\vec{r}_2)}{r_{12}} \; d\vec{r}_1 d\vec{r}_2 + E_{XC}[\rho] + \int V_{Ne} \rho(\vec{r}) d\vec{r} \\ &= -\frac{1}{2} \sum_i^N \left\langle \phi_i \middle| \nabla^2 \middle| \phi_i \right\rangle + \frac{1}{2} \sum_i^N \sum_j^N \int \int \middle| \phi_i(\vec{r}_1) \middle|^2 \; \frac{1}{r_{12}} \left| \phi_j(\vec{r}_2) \middle|^2 \; d\vec{r}_1 d\vec{r}_2 \\ &+ E_{XC}[\rho(\vec{r})] - \sum_i^N \int \sum_A^M \frac{Z_A}{r_{1A}} \left| \phi_i(\vec{r}_1) \middle|^2 d\vec{r}_1 \end{split}$$

Неизвестным остается только обменно-корреляционный функционал. Для его расчета используются различные подходы.

Например, аппроксимация локальной плотности - LDA

$$E_{XC}^{LDA}[\rho] = \int \rho(\vec{r}) \epsilon_{XC} \left(\rho(\vec{r}) \right) d\vec{r}$$

$$\epsilon_{XC}(\rho(\vec{r})) = \epsilon_X(\rho(\vec{r})) + \epsilon_C(\rho(\vec{r}))$$

$$\epsilon_X = -\frac{3}{4} \left(\frac{3\rho(\vec{r})}{\pi} \right)^{1/3}$$

Корреляционная часть получается из моделирования идеального электронного газа статистическими методами

Аксель Беке

Гибридные функционалы

Обменно-корреляционные функционалы могут быть получены как линеная комбинация обменных и корреляционных частей.

Этот подход позволяет комбинировать функционалы, получаемые различными методами, в том числе, включать в расчет и составляющие из теории Хартри-Фока

$$E_{xc}^{\text{B3LYP}} = E_{xc}^{\text{LDA}} + a_0(E_x^{\text{HF}} - E_x^{\text{LDA}}) + a_x(E_x^{\text{GGA}} - E_x^{\text{LDA}}) + a_c(E_c^{\text{GGA}} - E_c^{\text{LDA}}),$$